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We consider the class of experiments which can be characterized by a Fokker- 
Planck dynamics corresponding to the overdamped motion of a state point in a 
suitable stochastic potential. We assume that the general form of the potential is 
known (or can be guessed with reasonable accuracy), but that its parameters are 
to be determined experimentally by measurements made with a noisy instrument. 
This possible method for determining the potential parameters, which exploits the 
system's own internal stochastic motion in order to explore rapidly its available 
parameter space, is substantially more efficient than traditional methods 
involving time averages of single point measurements, and yet does not appear 
to have been previously considered. The method could be important when, 
for example, the experiment must be completed in a limited time owing either 
to the expense of the experimental materials or to the temporary stationarity of 
the preparation, situations which are commonly encountered in experimental 
biochemistry and biology. 

KEY WORDS: Fokker-Planck equation; instrumental noise; reaction 
potentials; fluctuating chemical reactions; enzyme reaction. 

1. I N T R O D U C T I O N  

A large class of nonlinear dynamical systems which are subject to either 
inherent or external fluctuations, or noise, are describable by Fokker-  
Planck equations. (1'2) Physical realizations run from continuously stirred 
chemical reactions, to lasers, liquid crystals, or semiconductors, to neurons 
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and excitable membranes all driven by noise. ~ 2) In many cases it may be 
of importance to measure experimentally certain parameters which deter- 
mine the state point motions of the system, for example, parameters in a 
chemical reaction, such as ratios of rate constants, which determine the 
temporal evolution of the reaction coordinate. We assume such parameters 
to be measurable quantities. If the probability densities experimentally 
obtained from measurements of the time series of the state point Xl(t) are 
describable as approximate solutions of a Fokker-Planck equation, then 
the parameters associated with the potential function U(xl) are in principle 
obtainable and of interest. It is our purpose in this paper to explore, by 
means of purely numerical experiments, how such parameters could be 
obtained from experimental data on x,(t) and the accuracy one might 
expect from such measurements. Moreover, we assume that the measure- 
ment of xl(t) is carried out with a noisy instrument whose noise is well 
characterized, that is, its probability density and intensity are well known, 
for example, by means of separate measurements. 

A schematic of such an experiment might be rendered as shown in 
Fig. 1. The experimental system, driven by its its own internal noise of 
intensity D1, generates the time series x~(t), which is detected and 
measured by the instrument adding noise x2(t) in the process. The output 
of the instrument is x(t) = x, + x2, which can be digitized and input to a 
computer. The computer obtains an ensemble average of the experimental 
probability density Pc(X), which we assume to be stationary over the 
course of the experiment. For simplicity, both noises are assumed to be 
white (that is, of infinite bandwidth) and Gaussian, which is often a 
good approximation in the case of the instrument noise, but is rarely so in 
the case of the internal noise of the system. It remains a future project 
to generalize this work to include the case of colored system and/or 
instrument noise. 

Our task is to guess the form of the potential U(x~). This leads to 
an ideal probability density P~(x~) containing the unknown parameters 
of U. Convolving P~ with the known instrument noise, we obtain an ideal 
density P(x), which is then to be matched, using nonlinear least squares 
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Fig. 1o A schematic representation of the method. 
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fit, to the experimentally obtained version Pe(X). The parameters are 
obtained from the fit. 

This technique stands in contrast to traditional methods of measuring 
the potential parameters by making painstaking time averages of x(t) for 
each member of a set of changed experimental conditions.~3'4) Such measure- 
ments are, of necessity, made in nonequilibrium conditions which may 
also change the potential parameters. Moreover, many such experiments, 
especially on enzyme reactions of importance in biochemistry, involve 
expensive materials. In other applications, particularly in biology, the 
system may not remain for long in a stationary state. In both cases the data 
need to be obtained as rapidly and efficiently as possible. The present 
technique, wherein all parameters are obtained from a single time series, 
measured in the steady state (if not in equilibrium) could therefore be of 
substantial importance in these cases. 

In this paper, as a preliminary exercise, we investigate the efficacy of 
this method using an idealized potential, the standard quartic, for which an 
exact solution of the Fokker-Planck equation is available. Numerically 
generated estimates of the potential parameters can therefore be compared 
to the exact values. Subsequently, we test the method using a potential 
function of specific importance in enzyme biochemistryJ 5) Our strategy is 
to associate a Langevin equation to the Fokker-Planck equation contain- 
ing the potential, digitally simulate the Langevin equation to produce a 
noisy dynamics which mimics the expected experimental result, and add 
the instrumental noise, all of which results in a noisy time series whose 
probability density represents the experimental data. The nonlinear least 
squares fit is then performed between this "experimental" probability 
density and the "ideal" or guessed one, in this test case obtained as an exact 
solution of the Fokker-Planck equation. Our question is, how accurately 
can the potential parameters be obtained, given a certain statistical 
accuracy for the experimental probability density and given a certain 
(known) instrumental noise intensity? 

This paper is organized as follows. In Section 2 we describe the 
method and lay out the equations employed for testing the method. In 
Section 3 we outline the numerical and Monte Carlo procedures used in 
generating the substitute experimental data, and we discuss the estimation 
of the potential parameters and questions of accuracy. In Section 4 we 
describe the numerical production of test data for an example enzyme 
reaction. We consider a widely used potential function appropriate to this 
reaction, and we show the method is used to extract the parameters of the 
potential. In both the enzyme and standard quartic cases the Fokker- 
Planck equation can be solved exactly, but the convolution integral of 
the solution with the instrument noise must be performed "numerically. We 
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outline, however, an approximate procedure for estimating solutions. In 
Section 5 we summarize our work and make some suggestions for the 
possible future development and exploitation of the method. 

2. DESCRIPTION OF THE M E T H O D  

For the purpose of testing this method, and to gain some insight into 
its accuracy, we have assumed a particularly simple, one-dimensional, 
bistable potential--the standard quartic--which has been well studied 
using Fokker-Planck methods (see, e.g., ref. 6): 

U(xl )=ax4-bx~;  a,b>O (1) 

The Langevin equation, which describes the temporal evolution of the state 
point Xl(t), is given by 

Yc 1 = -4ax~ + 2bxl + ~(t) (2) 

where the internal system noise r is Gaussian and white with zero mean, 

( r ~(s) ) = 2D~f ( t - s )  (3) 

With these conditions, the analogous Fokker-Planck equation 

63Pl(x1, t) 

Ot ~X 1 

~2 
- -  [ ( -4ax~  + 2bxl) P1] + D1 i Ox~5 Pl(xl '  t) 

can be solved exactly for the stationary density, 

Pj.(Xl) = N -1 exp(--Ax 4 + Bx~) 

(4) 

where A = a/D1 and B = b/D1 are the potential parameters to be determined. 
The normalization is given by 

N= 2 f~ 1 exp[ -A( ln  Xl)  4 "]- B(ln Xl)  2 ] dx 1 
Xl 

-- (2A)l/4exp ~-~ 0-1/2 (6) 

where Q_ 1/2 is a parabolic cylinder function. 
Now we add the instrumental noise, so that the experimentally 

(5) 
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accessible time series is x(t) = Xl(t) + x2(t), where x2 is Gaussian and white 
with intensity D2 defined by 

1 ( 
P2(x2) -  2(rcD2)1/2 exp - 4D2] (7) 

and where the variance is o- 2 = 2D 2. 
Now the probability density available at the output of the instrument 

is the convolution, 

P(x) = P1 conv P2 

1 2) 1/2 ~ oooo ~_[ ( x ~ -  023 . j exp - A t  4+Bt 2 -Jat  2N(~D 
2 

-N(4~zD2)I/2 exp ( -  ~D2) 

1 1 B x t) dt (8) • ~ e x p [ - A ( l n t ) 4 - ( ~ 2 -  ) ( l n t ) ] c~  

It is this density which will be fit to the experimental density Pe(X) in order 
to extract the parameters A and B. Of course in the real situation, that is, 
when dealing with a real experiment, we would have to guess the form of 
the potential U(x), but here, for the purpose of testing the feasibility, we 
can "guess" the exact result. Obviously, the overall accuracy of the method 
obtained in any practical situation will depend on the goodness of this 
guess. 

3. N U M E R I C A L  GENERATION OF TEST DATA A N D  EXAMPLE 
RESULTS FOR THE S T A N D A R D  QUARTIC  POTENTIAL 

In order to generate a time series which would play the role of 
experimental data, we have numerically integrated Eq. (2) for a = 0.25 and 
b = 0.5. This was done with completely standard techniques using the Heun 
algorithm for the integration and the Box-Mueller algorithm to generate 
the Gaussian white noise. (7'8) The step size was 0.001, and thenumber  of 
steps used in the integration was 3 x 10 6. To the time series xl(t) the second 
Gaussian white noise x2(t) was added, and the probability density of the 
sum P(x) was generated. The number of bins in the density was 1000. This 
result is shown in Fig. 2 for several values of O2,  but with D 1 = 0.1, which 
was a constant throughout this work. This value of D1 results in A = 2.5 
and B = 5.0, which play the roles of the unknown potential parameters. The 
ideal, or "guessed," function for P(x) was then fitted to the numerically 
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Fig. 2. Numerically generated probability densities from Eq. (2) with internal noise D1 = 0.1 
and with varying amounts of added instrumental noise (reading top to bottom): D 2 = 0.1, 0.2, 
0.4, and 1.0. Note that the residual bistability is evident only in the cases of D2 = 0.1 and 0.2. 

generated, or "experimental," result using the Levenberg-Marquardt 
nonlinear least squares method (see, e.g., ref. 9). Thus, if successful, our 
fitting procedure should result in approximations to the aforementioned 
exact values of A and B. We have generated P(x) for four different values 
of D2. Note that the largest value of D 2 is ten times larger than D1, and 
completely obscures the fact that the system density P~(x) is bistable. 

In order to obtain an estimate of the accuracy of the method, a Monte 
Carlo simulation was carried out. For all the same parameters, Eq. (2) was 
numerically solved 100 times, to generate 100 sample densities P(x). The 
nonlinear least squares fit to the ideal density was carried out for each case, 
and from these results we were able to generate means, medians, and 
standard deviations (about the mean) for the two fitting parameters A and 
B. The results are shown in Table I. The distributions of A and B obtained 

Table I, Results of Monte  Carlo Simulat ion for 
A - 2.50 and B = 5.0 for 100 Trials w i t h  D1 -- 0.1 

D2/D1 Amed a A Bmr aB 

1.0 2.5 • 5.0 • 
2.0 2.5 • 5.1 • 
4.0 2.6 • 5:1 • 

10.0 2.6 • 5.0 • 
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from the simulation are not Gaussian, nor even symmetrical about the 
mean. Using the means to represent the values of the parameters thus 
results in a bias (in this case, positive) such that the mean value systemati- 
cally increased with increasing O 2. We found, however, that there was no 
systematic bias in the median values, so those are quoted in Table I. The 
standard deviations quoted were nevertheless taken about the mean values. 
The results of Table I indicate that, at least in this numerical experiment, 
the potential parameters can be obtained with satisfactory accuracy by 
nonlinear least squares fit to a noisy density even when the instrumental 
noise is a factor of  ten larger than the internal noise, as indicated by the last 
entry in Table I. 

Even though this result seems quite encouraging, it is necessary to 
bear in mind that this numerical test was carried out under ideal, and 
perhaps unrealistic, conditions. First, and probably most important, the 
exact form of the system density function, Eq. (5), was known, thus 
eliminating a significant uncertainty which might arise in a real experiment. 
Second, in the course of the Monte Carlo test, this density was generated 
numerically to rather high accuracy, as indicated by the small fluctuations 
about the trend curves shown in Fig. 2. In an actual experiment, this 
density would be measured and averaged for some limited amount of time, 
and could be expected to show much larger fluctuations. 

In order to gain some insight into how the method might perform with 
a potential function which might actually be encountered in biochemistry 
experiments, in the next section we apply the method to a potential 
representation of an enzyme reaction obeying Michaelis-Menten kinetics. (5) 

4. A P P L I C A T I O N  OF T H E  M E T H O D  TO A N  E N Z Y M E  K I N E T I C S  

As a more realistic application, we now consider a nonlinear Langevin 
equation, which has been used previously (5) to represent an enzyme 
kinetics, 

Xl axl = - -  -b (231) 1/2 ~(t) (9) 
b + X l  

where x 1 is the substrate concentration (0 ~< xl ~< ~) ,  a is the maximum 
catalytic rate of the enzyme, and b is the substrate concentration at 
which the catalytic rate is half of its maximum value (a, b ~> 0). There is a 
reflecting boundary at Xl =0.  The potential function, Fokker-Planck 
equation, and its solution, the stationary probability density function 
Pl(x),  corresponding to this Langevin equation are 
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and 

U(Xl) = axl - ab [ln(b + xl) ] (10) 

OPl(Xl, t ) ~ [ ax I ] ~2 
Ot Oxl b_l_xlel(xl, t) -k-D1-'~x~Pt(Xl, t ) (11) 

Pl(Xl) = N -1 exp[- - ~ x l ( b  + xl) ~] (12) 

where ~ = ab/D1, [3 = a/D1, and the normalization constant is N =  
fi-  (~ +l)ea~F(1 + ~, [3a), with F representing the incomplete gamma function. 

Convolving P1 with the Gaussian instrumental noise P2 results in the 
density, 

f P ( y ) = N - l ( V / n )  1/z ( b + x ) ~ e x p [ - [ 3 x - v ( y - x )  2] dx (13) 

where ~ and fi defined above are the parameters to be found from the fit 
for this case, and 7=  (4D2) -1. This density can only be computed in an 
approximate form, which can be found by rewriting it as 

P(y) = N-1(7/n)1/2 exp[- - [3(y - [3/47)] I(y) (14) 

and defining 

f I ( y ) =  (b + x)~ e x p [ -  v ( x -  z) 2] dx (15) 

where z =y - [3 /27 .  The Gaussian term in the integral above is peaked 
around z, which can be positive or negative depending on the magnitude 
of y relative to [3/27. When z ~> 0 the prefactor (b + x) ~ can be expanded 
around z up to second order to yield 

(b + x) ~ ~ _ (b + z)~ + ~(b + z) ~-1 ( x -  z) + ~ ( ~ -  1)(b + z) ~-2 ( x -  z)2/2 

When z < 0 the prefactor is expanded around x = 0. Such a separation is 
made possible by the fact that I(y) is computed for x ~> 0. For large enough 
instrumental noise D2 the value of z becomes negative, and the resulting 
value of I(y) can be a very small number, since most of the Gaussian func- 
tion is contained in the negative half-plane. The case for small D2 gives to 
large and positive z, so that one must be concerned with the extremities of 
P(y), and any discrepancy arising from the approximation is likely to be 
negligible. It should be pointed out that for large D2 the auxiliary condition 

~< 1 must be met for the approximation to hold well, while no such 
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condition need be considered for small D 2. For ~ > 1 the prefactor grows 
rapidly, but the net contribution to the integral remains bounded. Using 
the Taylor expansion as above, I(y) becomes 

I(y) exp(Tz 2) = (27) -1/2 (b + z) ~ Q_ 1(co)+ (27) -2 ~(b + z) =-1 Q 2(co) 

+�89 ) for z~>O (16) 

and 
I ( y )  exp(7 z2) = (27) -1/2 b=D_l (co)  + (27) - 2  0cb ~ 1Q_2(co) 

+�89 3(co) for z < 0  (17) 

where co = - ( 2 7 )  1/2 z, and the Q's are parabolic cylinder functions. We do 
not here use this approximation, but only include it for general interest 
and utility. The analysis here proceeds by numerical integration of Eqs. (9) 
and (13). 

In order to play the role of an experiment, the densities P(y) were 
constructed by Monte Carlo simulation. As in the previous section, a 
stretch of 106 values of x was siriaulated by numerical integration of Eq. (9). 
Values of a =  1.0 and b = 1.0 (e = 10.0 and /~ = 10.0) were chosen for the 
parameters, and also as before D1 =0.1. The density P(y) so obtained 
is shown in Fig. 3 for three different values of the instrumental noise D 2 
ranging to a maximum value of 10. 

2.10- 

1,57 

1 . 0 5  
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- 3 , 4 0  - 1 . 5 5  0 , 3 0  2 . 1 5  4 . 0 0  

Y 
Fig. 3. Probability density function P(y) for the nonlinear Langevin equation which 
describes the enzyme kinetics. The values of c~,/~, and D 1 are 10.0, 10.0, and 0.1, respectively. 
The curves represent the values of D2/D 1 as follows: 0.01 (top), 0.1 (middle), and 1.0 
(bottom). 
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The nonlinear least squares fit was applied in both cases in order to 
obtain best fit estimates of D2, b, and fl in the case of the nonlinear 
Langevin equation and D2 and c~ in the linear case. The nonlinear fit 
was done by minimizing Z2=  Z i  [Pe(Yi)- p(yi) ]2  a?2 for each set of 
parameter values using a version of the Levenberg-Marquardt  algorithm. (9) 
Here Pe is the value obtained from numerical integration of the Langevin 
equation (or from experiment), P is the theoretical or "guess" function, a~ 
is the standard deviation associated with Pe(Yi), and y~ is the location 
(midpoint) of the ith bin. For  each value of D2, 100 density functions were 
constructed and analyzed. The results of these fits were collected in order 
to obtain estimates of the means, medians, and standard deviations which 
might be expected from such a procedure. 

The results of the Monte Carlo simulations are shown in Table II. In 
the linear case the simulated values of ~ are recovered with reasonable 
accuracy and insignificant bias up to an instrumental noise intensity which 
exceeds the internal noise by 100 times. Even in the extreme case where 
D2/D 1 = 80, a bias of only 8% is observed, although the standard deviation 
of c~ becomes more than 30%. Consistent with the basic principles of 
nonlinear least squares fitting techniques, (9) parameter resolution is more 
difficult in the nonlinear case, as indicated by the rather large values 
of the standard deviations for D2/D1 > 10. This table indicates, however, 
that b and fl can still be resolved with reasonable accuracy even when the 
instrument noise far exceeds the internal noise of the system. 

Table II. Resu l ts  of Monte Carlo Simulation of 
Nonlinear and Linear Dynamics wi th  D1 =0.1  a 

Enzyme (nonlinear) dynamics 
Linear dynamics 

D2/D 1 O~mr d _+ tr~ bmed _+ O'b timed _+ O'fl 

0.01 10.0 • 0.1 1.0+0.2 10.0__+1.2 
0.1 10.0__ 0.1 1.0__+0.2 10.1 __ 1.2 
1.0 10.0 _+ 0.1 1.0 ___+0.2 10.3 _____ 1.3 

10.0 10.0 -t- 0.3 1.1 + 0.4 10.3 + 2.6 
50.0 9.8 -+ 1.7 0.9 + 0.6 9.4 __ 3.8 
80.0 10.0 • 3.5 1.1 ___+ 0.7 9.1 _+ 4.3 

a The median and standard deviations are given as determined by 
100 realizations for exact parameter values, c~ = 10.0, b = 1.0, and 
f l=  10.0. In order to provide a comparison to an extremely 
simple system, we have applied the procedure also to the 
linear Langevin equation, ~ =  --ax+ ( 2 D J  1/2 ~(t), again with 
a=a/D1, for the values a =  1.0 and D1 =0.1 and for the same 
range of values of D 2. 
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5. C O N C L U S I O N S  A N D  D ISCUSSION 

We have shown that two unknown parameters of a one-dimensional 
potential in which there exists a Fokker-Planck dynamics in the large 
damping limit can be determined even in the presence of a large external 
noise. The method used is that of a nonlinear least squares fit of an 
experimentally obtained probability density to an estimated density resulting 
from a guess of the form of the potential. The method was applied to 
the standard quartic potential, for which an exact solution exists as a 
benchmark. It was further illustrated by application to a potential 
characteristic of catalytic enzymatic reactions. The numerical simulations 
presented here indicate that the potential parameters can be estimated 
with considerable accuracy. It therefore seems possible to exploit the con- 
siderable amount of information encapsulated by a probability density 
function obtained as the convolution of properties inherent to a stochastic 
dynamics with experimental error arising from instrumental noise. 

The approach developed here for the resolution of model parameters 
in two prototypic examples of general interest may prove of value in the 
analysis of other experimental systems where the effects of internal noise 
need to be decoupled from the instrumental noise. The ideal cases treated 
here in a strictly numerical experiment seem to result in considerably more 
accurate estimates of the parameters than would probably be possible in a 
real experiment. For  example, we have made no studies on the effects of the 
inevitably nonideal nature of real experimental data. In order to further 
develop this method and to test its potential usefulness, the effects of 
asymmetries, shifts, and deviations of functional form of the actual data 
from the "guess" of P(x)  need to be studied, as well as the simple statistical 
accuracy of limited samples. 
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